APPENDIX II: MATRICES OF HABITAT CHARACTERISTICS AND PARAMETERS When developing a restoration monitoring plan, the goals of the project and knowledge of the habitat should be used to identify potential structural and functional characteristics to be monitored. Parameters then need to be identified that can be used to appropriately determine the status of or change in each characteristic. In some cases, it is critical to monitor the effects a restoration project has on social or economic aspects of the local human community or regional population. The parameters presented in this appendix and elsewhere in this volume, however, do not address socioeconomics. The monitoring of the effects of coastal restoration on human dimensions will be covered in *Volume Two: Tools for Monitoring Coastal Habitats*. Additionally, a stand-alone document addressing in detail the role of socioeconomics in the monitoring of coastal restoration projects is currently in development. Through a series of matrices, this appendix establishes a three-part process that walks the reader through the selection of habitat characteristics and corresponding parameters for inclusion in a restoration monitoring plan. The three steps are: identification of appropriate structural and functional characteristics of the habitat; identification of parameters that determine the change in or status of those habitat characteristics; and determination of suitability of the potential parameters for use in a given habitat. An example of how to use this appendix follows the description of the matrices In using these matrices, it should be remembered that the goal of coastal restoration is to recover functioning habitat as noted earlier in this document in *The Process of Developing a Monitoring Plan*. # Matrix A. Structural and Functional Characteristics of the Habitats The structural components of a habitat are the physical, chemical, and biological characteristics that define that habitat. The functional components are the processes occurring within and between habitats as a result of their structural components. The ultimate goal of any restoration action should be to return functions and not simply build structure⁶. Understanding the structure and function of a habitat allows for an understanding of the fundamental ecology of the system and selection of those parameters most relevant to the goals of the project. Matrix A provides a listing of significant structural and functional characteristics for each habitat type. This listing was developed through searches of the ecological literature, published restoration efforts, and ecological monitoring studies. Additionally, ecologists, restoration researchers, and people involved with monitoring provided extensive input. Other characteristics not included on these lists may be appropriate depending on the goals of an individual restoration project. The determination of which structural and functional characteristics will be monitored for a given restoration project should be made in conjunction with experts on the local habitat, keeping in mind that the goals of a given project that directly determines the characteristics to be monitored. Detailed habitat descriptions, as well as discussions of the habitat structural and functional characteristics and the rationale for their inclusion, are found in *Coastal Habitats: Ecology, Restoration, and Monitoring*, a chapter in *Volume Two: Tools for Monitoring Coastal Habitats*. # Matrix B. Structural and Functional Characteristics and Their Associated Parameters Once a list of the relevant structural and functional characteristics to be monitored has been developed for a restoration project, parameters need to be identified that will appropriately determine the status of or change in those characteristics. Matrix B provides a list of parameters associated with each structural and functional characteristic identified in Matrix A. The experts in each habitat reviewed and augmented the lists to ensure that parameters included can be used to accurately assess progress toward restoration goals. Additionally, searches of the ecological literature, published restoration efforts, and ecological monitoring studies were conducted to determine the types of parameters considered in coastal restoration projects. Matrix B should be used to develop a broad list of potential parameters that may be included in the monitoring plan. This list of potential parameters is not exhaustive, however, and should be considered a starting point. Other parameters not included on these lists may be appropriate for assessing change in or the status of a given characteristic. The determination of the parameters to be monitored should be made in conjunction with experts, including those with a background in statistics, the local habitat, and monitoring the characteristics in question. ### Matrix C. Restoration Monitoring Parameters By Habitat Once a broad list of monitoring parameters has been developed, it is important to review that list to determine those parameters that are applicable to a specific habitat. Matrix C provides a list of parameters that are significant or appropriate for monitoring in each habitat. The parameters have been sorted to reflect their relevance to either structural or functional characteristics. As with Matrices B and C, the listing of habitat specific parameters used in restoration monitoring was developed through literature searches of restoration efforts and ecological monitoring studies and through extensive input from restoration and monitoring researchers with expertise in that particular habitat. The lists include those parameters most commonly measured in restoration monitoring in each habitat and are not to be considered exhaustive. Experts on each habitat have reviewed and augmented the lists to ensure that parameters included can be used to accurately assess progress toward restoration goals. Other parameters not included on these lists may be appropriate depending on the goals of an individual restoration project. The parameters included in this matrix are classified into two groups. Parameters marked with a filled circle are those indicated by experts as critical for inclusion in the monitoring of most restoration projects in this habitat. Parameters marked by an open circle are those that may be considered for inclusion in a monitoring plan, depending on the goals of the restoration project but are not considered critical for all monitoring projects. #### **How to Use the Matrices** The example provided below walks readers through the process of identifying potential parameters to be measured in the monitoring of a coastal restoration project. Although most projects will have multiple goals, this example will pertain to a single goal. Project goal: To increase the acreage of marsh habitat within the project area as a means of supporting an endangered terrapin population. *Matrix A*: There are a wide variety of structural and functional characteristics associated with marshes. When reading through this list, the intent and constituent parts of the specific goal should be kept in mind. Given that the goal above involves creating marsh with the specific idea of supporting terrapins, the long list of characteristics can be reduced to these items: - Habitat created by plants - Provides breeding grounds - Provides nursery area - Provides feeding grounds - Supports a complex trophic structure - Supports biomass production *Matrix B*: For each characteristic identified in Matrix A, a set of potential parameters is then identified. This example walks through the parameter selection process for one of the characteristics from the above list. The long list of parameters generated in this step of the process will be tailored to the habitat in question through the use of Matrix C and knowledge of the intent of the specific goal. Parameters associated with the functional characteristic "Provides feeding grounds": #### Geographical • Acreage of habitat types #### Biological #### Plants - Species, composition, and % cover of: - o Algae - o Epiphytes - o Herbaceous vascular - o Invasives - o Woody - Canopy extent and structure - Interspersion of habitat types - Litter fall - Mast/seed production - Phytoplankton diversity and abundance - Plant health (herbivory damage, disease) - Plant weight (above and/or below ground parts) - Woody debris (root masses, stumps, logs) #### Animals - Species, composition, and abundance of: - o Amphibians - o Birds - o Fish - o Invasives - o Invertebrates - o Mammals - o Reptiles - Coral growth rate - Coral recruitment and survivorship - Vertical relief of reef # Hydrological #### Physical - Trash - Water level fluctuation over time #### Chemical - Chlorophyll concentration - Salinity (in tidal areas) - Toxics #### Soil/Sediment #### Physical - Basin elevations - Geomorphology (slope, basin cross section) #### Chemical • Organic content in sediment *Matrix C*: This matrix assists readers in reducing the long list of potential parameters down to those appropriate for the habitat and goal in question. Using Matrix C and knowledge of terrapin biology, the list of parameters for the functional characteristic "provides feeding grounds" becomes: - Acreage of habitat types (associated with the structural element of the goal) - Interspersion of habitat types (allows access to marsh habitat) - Herbaceous species composition and percent cover (type and density of marsh plants is one aspect of the quality of the habitat) - Species composition and abundance of: - o Fish (potential prey items) - o Invertebrates (potential prev items) - o Reptiles (terrapins) - Water fluctuation over time (important for marsh health, as well as aspects of terrapin biology including breeding and feeding) - Basin elevations (important aspect of habitat quality and accessibility) - Geomorphology, including slope and cross section (important for marsh diversity and
accessibility) This process provides a convenient means of identifying habitat characteristics and their associated parameters. It is critical, however, that the process be augmented with a thorough knowledge of local habitats and a strong understanding of the intent of the project goals. Use the characteristics and parameters identified through the use of these matrices as a starting point for discussion for a group that includes managers, statisticians, and scientists such as ecologists, hydrologists, geologists, physical oceanographers, and fisheries biologists. ### Matrix A: Structural and Functional Characteristics of the Habitats | | | | | | | На | bita | ts | | | | | | |--|--------------|-------------|------------|-------------|-------------|------------------------|-------------|------------|-----|-------|-----------|---------------------|------------------| | Structural Characteristics | Water Column | Rock Bottom | Coral Reef | Oyster Reef | Soft Bottom | Kelp and
Macroalgae | Rocky Shore | Soft Shore | SAV | Marsh | Mangroves | Deepwater
Swamps | Riverine Forests | | Biological | | | | | | | | | | | | | | | Habitat created by animals | | | Х | Х | | | | | | | | | | | Habitat created by plants ¹ | | | | | | Х | | | Х | Х | Х | Х | Х | | Physical | | | | | | | | | | | | | | | Sediment grain size | | Х | | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | Topography/Bathymetry | | Х | Х | Х | Х | | Х | Х | Х | Х | Х | Х | Х | | Turbidity | Х | | | | | Х | | | Х | | | | | | Hydrological | | | | | | | | | | | | | | | Current velocity | Х | Х | | Х | Х | Х | Х | | Х | Х | Х | Х | | | Tides/Hydroperiod ² | Х | | | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | Water sources | Х | Х | Х | Х | Х | Х | | | Х | Х | Х | Х | Х | | Wave energy | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | | | Chemical | | | | | | | | | | | | | | | Nutrient concentration | Х | | Х | Х | | | | | Х | Х | Х | | | | pH, salinity, toxics, redox, DO | X | Х | X | X | Х | Х | х | | X | X | X | х | Х | | Biological Contributes to primary productivity Exhibits symbiotic species interactions | Х | | X | | | Х | | Х | Х | Х | Х | Х | Х | | Produces wood | | | | | | | | | | | Х | х | х | | Provides breeding grounds | х | Х | Х | Х | Х | Х | х | Х | Х | Х | Х | X | Х | | Provides feeding grounds | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | Provides nursery areas | | Х | Х | Х | | Х | | | Х | Х | Х | Х | Х | | Provides refuge from predation | | Х | Х | Х | | Х | Х | Х | Х | Х | Х | | | | Provides substrate for attachment | | Х | Х | Х | | Х | Х | | Х | Х | Х | | | | Supports a complex trophic structure | | | Х | Х | | Х | | | Х | Х | Х | Х | Х | | Supports biodiversity | | | Х | Х | | Х | | | Х | Х | Х | | | | Supports biomass production | Х | | Х | Х | | Х | | | Х | Х | Х | Х | Х | | Hydrological Physical | | | | | | | | | | | | | | | Affects transport of suspended/dissolved material | Х | Х | | | | | | | Х | Х | Х | Х | Х | | Alters turbidity | | Х | | Х | Х | | | Х | Х | Х | Х | Х | Х | | Modifies water temperature | | | | | | | | | Х | | Х | Х | Х | | Provides temporary flood water storage | | | 1 | | | 1 | | | | Х | Х | Х | Х | | Reduces erosion potential | | X | X | X | | X | X | | X | X | X | Х | | | Reduces wave energy | | Х | Х | Х | <u> </u> | Х | Х | <u> </u> | Х | Х | Х | | <u> </u> | | Chemical | | | | | | | | | | | | | | | Modifies chemical water quality | Х | | | Х | Х | Х | | | Х | Х | | Х | Х | | Modifies dissolved oxygen | | | | | X | X | | | X | | | | | | Supports nutrient cycling | X | | Х | Х | Х | Х | | | Х | Х | Х | Х | Х | When present, plants are always important even if they are not a defining structural feature of the habitat. Refers to the timing, height, and duration of water level fluctuations X = a defining structural or functional characteristic of a particular habitat Matrix B: Parameters to Monitor Structural and Functional Characteristics | pH, salinity, toxics, redox DO |--------------------------------|--|---|--
--|--|--|--|---|--|---|---|--|--|--
--	--	--	---
--|--| | Nutrient
concentration | | | | | | | | | | | * | | | | | | | | | | | | | | | Chemical | Wave energy | • | | | | Water Sources | Tides
Hydroperiod | Current velocity | * | • | | | Hydrological | | | | • | | | | | | | | | | | | • | • | | • | | | | | | | Turbidity | • | | | | | | | | | | * | | | | | | | | * | * | * | | | | | Topography
Bathymetry | | | | | | | | | | • | | | | | • | | • | | | | | | | | | Sediment grain size | Physical | Habitat created by plants | • | | | * | * | * | * | * | * | • | * | * | * | • | • | | | | | | | | | | | Habitat created by animals | • | | | | | | | | | • | | | | | | | • | | | | | | | | | Biological | | | | • | | | | | | | | | | | | • | - | | • | Parameters to Monitor | Geographical Acreage of habitat types | Biological
Plants | Species, composition, and % cover of: | Algae | Epiphytes | Herbaceous vascular | Woody | Basal area | Canopy extent and structure ² | Interspersion of habitat types | Phytoplankton diversity and abundance | Plant height | Seedling survival | Stem density | Woody debris (root masses, stumps, logs) | Animals | Vertical relief | Hydrological
Physical | Chlorophyll concentration | PAR³ | Secchi disc depth | Shear force at sediment surface | Sheet flow | | | | Montrient Chemical Fiological Fiological Fiological Fiological Fiological Fiological Formital Formital Formital Forment yelocity Formical Forment yelocity Formical | ## Topography Physical Phydroperiod Phyd | Parameters to Monitor Biological Habitat created by Plantiat created by Plantiat Concentration Physical Current velocity Hydroperiod Water Sources Wave energy Tides Wave energy Wave energy Chemical Chemical Chemical Chemical Chemical Chemical Chemical | omposition, and % concentration of habitat types of habitat types omposition, and % cover of the concentration | Parameters to Monitor Biological Biological Habitat created by Bathymetry Physical Tides Physical Topography Physical Tides Hydroperiod Wave energy Current velocity Hydroperiod Wave energy Water Sources Wave energy Cal Wave energy Water Sources Wave energy Chemical Outrient Concentration Physical Wave energy Water Sources Wave energy Chemical Outrient Outrient Concentration Physical Wave energy Chemical | Biological Habitat created by animals Habitat created by plants Habitat created by plants Physical Topography Bathymetry Turbidity Hydroperiod Wave energy Turbidity Hydroperiod Water Sources Wave energy Mater Sources Wave energy Mutrient Concentration Physical Wave energy Mutrient Concentration Physical Mutrient Concentration | Parameters to Monitor Biological Biological Habitat created by animals Physical Current velocity Physical Tides Hydroperiod Wave energy Tides Hydroperiod Wave energy Water Sources Wave energy Chemical Chemical Hutrient Concentration Physical Wave energy Chemical Mutrient Concentration Physical Mutrient Concentration Physical Mutrient Concentration | Biological Biological Biological Biological Biological Habitat created by Bathymetry Parameters to Monitor Biological Habitat created by Bathymetry Tides Hydroperiod Wave energy | Parameters to Monitor Biological Biological Habitat created by Habitat types Addroperiod Tides Hydroperiod Wave energy Chemical Wave energy Water Sources Wave energy Water Sources Wave energy Water Sources Wave energy Chamical Wave energy Concentration Physical Wave energy Water Sources Worker Water Sources Worker Water Sources Wave energy Concentration | Parameters to Monitor Parameters to Monitor Parameters to Monitor Biological Habitat created by Physical Current velocity Hydroperiod Wave energy Chemical Chemical Concentration Hydroperiod Wave energy Chemical Hydroperiod Wave energy Chemical Hydroperiod Wave energy Chemical Duttient voxica: | Parameters to Monitor Parameters to Monitor Biological Habitat created by animals Habitat created by Physical Current velocity Habitat created by Physical Current velocity Habitat created by Physical Current velocity Wave energy Chemical Chemical Physical Wave energy Chemical Physical Wave energy Wave energy Chemical Physical Wave energy Chemical Physical Chemical Physical Wave energy Chemical Physical Chemical Chemical Chemical Physical Chemical | Parameters to Monitor Parameters to Monitor Parameters to Monitor Parameters to Monitor Biological Gediment grain size Physical Hydroperiod Wave energy Turbidity, toxics, Physical Physical Physical Physical Wave energy Wave energy Turbidity Wave energy Physical Wave energy Ph | Parameters to Monitor Biological Biological Habitat created by Bathymetry Physical Habitat created by Bathymetry Physical Turbidity Physical Habitat types Turbidity Physical Wave energy Cal Hydroperiod Wave energy Chemical Oody I area Physical | Parameters to Monitor Biological Biological Ged of habitat types Figure of habitat types Physical Biological Figure of habitat types Figur | Parameters to Monitor Physical and Structure and Structure application of habitat types Physical and Structure application and Woover of: Physical and Structure application of habitat types Physical and Structure application of habitat types Physical and Structure application of habitat types Physical habita | Parameters to Monitor Iphical Biological Gal Gal Gal Habitat types Physical Gody Habitat types Physical Gody Habitat types Physical | Parameters to Monitor Biological Habriat created by Hydroperiod Physical Turbidity Hydroperiod Physical Phy | Parameters to Monitor Cal Hydrological Physical | Parameters to Monitor Parameters to Monitor Parameters to Monitor Parameters to Monitor Biological Grad Habitat created by Physical Physica | Parameters to Monitor Parameters to Monitor Parameters to Monitor Parameters to Monitor Physical Biological Hydropeniod Physical | Parameters to Monitor Biological Graf life survival life survival concentration Calculating survival life life survival concentration Calculating survival life surviva | Parameters to Monitor Parameters to Monitor Phiesi Biological Habitat created by Authoreful and Scower of animals Habitat (realed by Hadron diversity and abundance in fine string) Physical animals Bensoon of habitat types Physical animals Physical animals Habitat (realed by Hadron diversity and abundance in fine string) Physical animals Physical animals Hadron of the selection of habitat types Physical animals Physical animals Bensoon of habitat types Physical animals transfers animal | Parameters to Monitor Parameters to Monitor Parameters to Monitor See of habitat types Biological Hydrological Fies, composition, and % cover of, the abitat types Physical Biological Hydrological Hydrological Fies can be seed of habitat types Physical Biological Hydrological Hydro | Parameters to Monitor Parameters to Monitor Parameters to Monitor | ¹ Dissolved oxygen ² Applies to forest, submerged aquatic vegetation (SAV), and kelp habitats ³ Photosynthetically active radiation, measured at canopy height and substrate surface = a pairing between a habitat characteristic and a measured parameter Matrix B: Parameters to Monitor Structural and Functional Characteristics (cont.) | | redox, DO |] | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | |----------------------------|----------------------------|---------------------------------------|-----------------|-------------|-------------------|-------------------------------
--|----------|------------------|--|-------------------------|----|---------------------------|---------|----------|---------------------------|--------------------|--------------|-------------------|--|------------------------------|-----------------|------------------------------|--------------------------------|----------|------------------------------------|--------------------------------------|-----------------| | | pH, salinity, toxics, | | | | | | | | * | | | • | • | | * | | | | | | | | | | | | • | • | | | Nutrient concentration | | | | | | | | | | * | | | • | | | | | | | | • | * | • | | * | | | | • | Chemical | ı | | | | | <u> </u> | | | | | | <u> </u> | | | | | | <u> </u> | | | <u> </u> | <u> </u> | | | | | | | | Wave energy | S | Water Sources | | | * | * | | • | | | * | | | • | | • | | | | | | | | | | | | | | | Structural Characteristics | Fides
Hydroperiod | | * | * | | | • | | | | | | • | | | | | | * | • | * | * | | * | | | | | | acte | Current velocity | | | | | * | | | | | | | | | | | | | | | | | | * | | | | | | Shar | Hydrological | J | | | l <u> </u> | l | | | | | | | | | | | | | | | | l | <u>I</u> | | | | | | | ıra | Turbidity | uctu | Тородгарһу
Ваtһутеtгу | | | | | | | | | | | | | | | | * | | | • | | | | * | | | | | | Str | Sediment grain
size | | | | | | | | | | | | | | | | | • | | | | * | * | * | | | | | | • | Physical | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | • | Habitat created by | - | Habitat created by animals | • | Biological | 1 | | | | | II | | | | | | l | | | | | | | | | l | Parameters to Monitor | Hydrological (cont.) Physical (cont.) | Temporary water | Temperature | Upstream land use | Water column current velocity | Water level fluctuation over time | Chemical | Dissolved oxvaen | Groundwater indicator chemicals ⁴ | Nitrogen and phosphorus | Hd | Salinity (in tidal areas) | Silicon | Toxics | Soil/Sediment
Physical | . Basin elevations | Bulk density | Depth of mottling | Geomorphology (slope, basin cross section) | Moisture levels and drainage | Organic content | Percent sand, silt, and clay | Sedimentation rate and quality | Chemical | Pore water nitrogen and phosphorus | Pore water salinity (in tidal areas) | Redox potential | ⁴ Calcium and magnesium igl = a pairing between a habitat characteristic and a measured parameter Matrix B: Parameters to Monitor Structural and Functional Characteristics (cont.) = a pairing between a habitat characteristic and a measured parameter ⁵ Applies to forest, submerged aquatic vegetation, and kelp habitats ⁶ If the whole community is destroyed by disease or lack of seedling survival, all vegetation-related functions will be impaired Matrix B: Parameters to Monitor Structural and Functional Characteristics (cont.) | Supports nutrient cycling |---|---|---|--|--
--|--|---|--|---|---|---|---
--|---|--|--
--|---|---| | Modifies dissolved oxygen | | | | | | | | | | | | | | | | | • | | | | Modifies chemical water quality | | | | | | | | | | | | | | | | | • | | | | Chemical | • | Reduces wave energy | | | • | • | | | | | | | | | | | | | | | • | | Reduces erosion potential | | * | * | • | | | | | | | | | | | | | | | • | | Provides temporary floodwater storage | Modifies water temperature | | | • | | | | | | | | | | | | | | | | | | Alters turbidity | | | • | | | | | | | | * | | | | * | * | | | • | | Affects transport of suspended/dissolved material | | | * | | | | | | | | • | | | | * | * | | | • | | РһуѕісаІ | | - | | | | | | | | | | | | | | | | | | | Supports biodiversity | | | | • | | | | * | * | * | • | • | * | • | * | | | | | | Supports biomass production | | | | | | | | * | * | * | • | * | * | * | * | | | | | | Supports a complex trophic structure | | | * | • | | | | * | * | * | | * | * | * | * | • | | | • | | Provides substrate for attachment | : | | * | • | | | | | | | | | | | * | • | | | • | | Provides refuge from predation | | | • | • | | | | • | * | • | • | • | • | • | * | • | | • | • | | Provides nursery areas | | | * | • | | | | * | * | * | * | • | * | * | * | * | | • | • | | Provides feeding grounds | | | | • | | | | * | * | * | * | * | * | • | * | • | | | • | | Provides breeding grounds | | | | • | | | | * | * | * | | • | * | * | * | • | | | • | | Produces wood | | * | | • | | | | | | | | | | | | | | | | | Exhibits symbiotic species interactions | | | | | | | | | | | | | | | * | * | | | | | Contributes primary production | | | | | | | | | | | | | | | * | * | | • | • | | Biological | • | | | | | | ij | | | | | | | | | | | | | | Parameters to Monitor | Biological (cont.) Plants (cont.) | Seedling survival ⁷ | Stem density | Woody debris (root masses, stumps, logs) | Biological | Animals | Species, composition, and abundance of: | Amphibians | Birds | Fish | Invasives | Invertebrates | Mammals | Reptiles | Coral growth rate | Coral recruitment and survivorship | Fecal coliforms | Grazer density | Vertical relief of reef | | | Biological Contributes primary production Exhibits symbiotic species interactions Provides wood Provides freeding grounds Provides refuge from predation Provides refuge from predation Provides unrsery areas Provides unsery areas Supports a complex trophic subports a complex trophic subports biomass production Supports a complex trophic | ameters to Monitors Biological Contributes primary production interactions Exhibits symbiotic species interactions Provides breeding grounds Provides breeding grounds Provides refuge from predation Provides refuge from predation Provides aubstrate for attachment Supports a complex trophic structure Supports a complex trophic subports biodiversity Affects transport of Supports biodiversity Supports biodiversity Supports biodiversity Affects transport of Supports biodiversity Supports a complex trophic subports biodiversity Supports biodiversity Affects transport of Supports biodiversity Supports biodiversity Supports biodiversity Supports biodiversity Supports biodiversity Supports biodiversity Chemical Chemical | Biological Contributes primary production interactions Exhibite symbiotic species interactions | Biological Contributes primary production provides breeding grounds provides refuge from predation removed material p | Biological Contributes primary production Exhibits symbiotic species interactions | Biological Contributes primary production Biological Contributes primary production Exhibits symblotic species interactions provides from predation grounds provides nursery areas refuge from predation provides decing grounds attructure surportate for attachment provides refuge from predation provides refuge from predation provides decing grounds attructure surportate for attachment provides refuge from predation provides refuge from predation provides refuge from predation provides provid | Biological Contributes primary production Biological Contributes primary production Exhibits symbiotic species provides teeding grounds provides teeding grounds Provides teeding grounds Provides biodiversity Provides unreery areas Supports a complex trophic Supports a complex trophic Supports biomass production Physical Affects transport of Physical Supports biomass production Physical Supports biomass production Supports biomass production Supports a complex trophic Supports a complex trophic Supports a complex trophic Supports a complex trophic Supports biomass production Supports biomass production Physical Supports disapport of Physical Supports disapport of Meduces ereigy Chemical Modifies disaolved oxygen Chemical Modifies disaolved oxygen | maters to Monitor and abundance of: Contributes primary production Provides preding grounds | manufers to Monifor Contributes primary production | ## Provides described from prediction Contributes primary production | integration and abundance of the provides the principle of the provides the provides the provides the provides the provides the provides the alter the provides t | ## Sign of the control contr | Biological Contributes primary production Exhibits symbiotic species Contributes primary production Exhibits symbiotic species Provides retuge from predation preda | Biological Contributes primary production Exhibits symbiotic
species Exhibits symbiotic species Frovides tenge from predation Provides tenge from predation Provides tenge from predation Provides tenge from predation Provides tenge from predation Supports a complex trophic | Biological Biological Biological Contributes primary production Browides tengorary floodwater temperature Chemical water duality Provides tengorary floodwater Supports a complex trophic subcorder and attractions Provides retuge from predation Supports a complex trophic subconders are subconding grounds Provides retuge from predation Prov | Biological Biological Contributes primary production Provides recording grounds Pr | ## And a Bundance of the complete than produce that that the complete than produce the complete than the complete than the complete that the complete than comp | ## Conditions disposition, and abundance of the filter and survivorship su | ## Fig. 12 12 12 12 13 13 13 13 | ⁷ If the whole community is destroyed by disease or lack of seedling survival, all vegetation-related functions will be impaired lacktriangleda= a pairing between a habitat characteristic and a measured parameter Matrix B: Parameters to Monitor Structural and Functional Characteristics (cont.) | Parameters to Monifor Parameters to Monifor Winder fevel fluctuation over time Parameters to Monifor Provides deciding grounds Provides relating throughing grounds Provides relating rela | | _ | _ | _ | _ | _ | _ | _ | π_ | nctic
- | onal | Functional Characteristics | ract | erist | iics
- | _ | _ | _ | _ | _ | _ | _ | _ | |--|-----------------------------------|------------|----------|---|---|--------|---|---|----|--------------------------------------|-----------------------------|----------------------------|------|---|------------------|---|---|--------|---|----------|----------|---------------------------|---| | Figure F | Parameters to Monitor | Biological | | | | | | | | Supports a complex trophic structure | Supports biomass production | Supports biodiversity | | Affects transport of suspended/dissolved material | Alters furbidity | | | | | | | Supports nutrient cycling | | | Control depth | ydrological
hysical | | | | | | | | | | | | | | | | | | Ī | | | | Ī | | • • • • • • • • • • | Fetch | | | | | | | | | | | | | • | * | | _ | *
• | | | • | | | | Control of o | PAR | | • | | | | | | | | • | | | • | • | | | | | | | | | | Control at sediment surface Cont | Secchi disc depth | | * | | | | | | | | • | | | * | * | | | | | | | | | | low rature | Shear force at sediment surface | | | | | | | | | | | | | • | • | | • | • | | | | | | | Temporature | Sheet flow | | | | | | | | | | | | | • | * | _ | • | • | | • | * | • | | | Trash Trash Proporary water wa | Temperature | | | | _ | • | • | | | | | | | | | • | | | | • | * | | | | Trash Upstream land use Water column current velocity • <th< td=""><td>Temporary water</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>•</td><td></td><td></td><td>•</td><td>•</td><td>*</td><td></td></th<> | Temporary water | | | | | | | | | | | | | | | _ | • | | | • | • | * | | | Upstream land use Water column current velocity • • • • • • • • • • • • • • • • • • • | Trash | | | | | • | | | | | | | | * | * | | | | | | | | | | Water column current velocity Water level fluctuation over time * * * * * * * * * * * * * * * * * * * | Upstream land use | | | | | | | | | | | | | * | * | | | | | • | | | | | Water level fluctuation over time Part | Water column current velocity | | | | | | | | | | | | | * | * | | • | _ | | | | | | | Pemical Chlorophyll concentration | Water level fluctuation over time | | | | _ | *
• | • | • | | | | | | * | * | _ | • | • | | | * | • | | | Chlorophyll concentration ◆ </td <td>hemical</td> <td></td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> | hemical | | | | | | | | | | | | I | | | | | | | | | | 1 | | Dissolved oxygen Pissolved oxygen< | Chlorophyll concentration | | • | | | • | | | | | • | | | • | * | | | | | • | • | • | | | ♦ Nitrogen and phosphorus ♦ Image: PH Salinity (in tidal areas) ♦ Image: PH Im | Dissolved oxygen | | | | _ | • | • | | | * | | * | | | | | | | | • | * | * | | | pH ♦ | Nitrogen and phosphorus | | • | | | | | | | | • | | | | * | | | | | • | | * | | | Salinity (in tidal areas) • <td>Н</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> | Н | | | | | | | | | | | | | | | | | | | • | | | | | | Salinity (in tidal areas) | Ш | | | | *
• | | | | | | • | | | | | | | | * | • | | | igoplus = a pairing between a habitat characteristic and a measured parameter Matrix B: Parameters to Monitor Structural and Functional Characteristics (cont.) | • | Supports nutrient cycling | | | | | | | • | • | | • | • | | | • | * | | • | |---|---|----------------------|---------|---|---------------|----------|------------------|--------------|-------------------|--|------------------------------|---|--------------------------------|----------|-----------------------------|------------------------------------|--------------------------------------|-----------------| | • | Modifies dissolved oxygen | | | | | | | | | * | | • | | | * | | * | | | ٠ | Modifies chemical water quality | | • | | | | | | | * | | • | | | * | * | | * | | ٠ | Chemical | I | | | - | | | | | | | I | | I | | | | | | | Ке duces wave energy | | | | | | | | | | | • | | | | | | | | | Reduces erosion potential | | | | | | | | | * | | • | * | | | | | | | | Provides temporary floodwater storage | | | | | | * | | * | * | * | | | | | | | | | • | Modifies water temperature | | | | | | * | | | * | | | | | | | | | | 3 | Alters turbidity | | | | | | | | | * | | • | * | | * | | | | | 2 | Affects transport of suspended/dissolved material | | | | | | • | | | • | | • | • | | • | | | | | | РһуѕісаІ | • | | | - | | | • | | | | | | | | | | | | 5 | Supports biodiversity | | | | | | • | | | * | * | | • | | * | | * | | | 3 | Supports biomass production | | • | , | | | | | | | | • | | | * | * | | | | 5 | Supports a complex trophic structure | | | | | | | | | | | | | | * | | | | | 5 | Provides substrate for attachment | | | | | | * | | | * | | • | | | | | | | | • | Provides refuge from predation | | | | | | * | | | * | | | | | | | | | | • | Provides nursery areas | | | • | | | * | | | * | | | | | | | | | | • | Provides feeding grounds | | | • | | | * | | | * | | | | | * | | | | | • |
Provides breeding grounds | | | • | | | • | | | * | | | | | | | | | | • | Produces wood | Exhibits symbiotic species interactions | | | | | | | | | | | | | | | | | | | • | Contributes primary production | | • | , | | | | | | | | | | | | | | | | - | Biological | ı | | | | | | | | | | I | | | | | | | | | Parameters to Monitor | Hydrological (cont.) | Silicon | | Soil/Sediment | Physical | Basin elevations | Bulk density | Depth of mottling | Geomorphology (slope, basin cross section) | Moisture levels and drainage | Sediment grain size
(OM ⁸ /sand/silt/dav/gravel/cobble) | Sedimentation rate and quality | Chemical | Organic content in sediment | Pore water nitrogen and phosphorus | Pore water salinity (in tidal areas) | Redox potential | ⁸ Organic matter lacktriangleda= a pairing between a habitat characteristic and a measured parameter # Matrix C: Restoration Monitoring Parameters by Habitats | | - | - | | i | | Ha | bita | its | | | | | • | | |----------------------------------|--------------|-------------|------------|-------------|-------------|------------------------|-------------|------------|-----|-------|-----------|---------------------|---------------------|---| | Structural Parameters to Monitor | Water Column | Rock Bottom | Coral Reef | Oyster Reef | Soft Bottom | Kelp and
Macroalgae | Rocky Shore | Soft Shore | SAV | Marsh | Mangroves | Deepwater
Swamps | Riverine
Forests | | | Geographical | | | | | | | | | | | | | | _ | | Acreage of habitat type | • | • | • | • | • | • | • | • | • | • | • | • | • | | #### **Biological** Plants Species, composition, and % cover of: | Algae | | C | C | O | | • | • | • | C | | O | | | |--|---|---|---|---|---|---|---|---|---|---|---|---|---| | Epiphytes | | | • | | 0 | O | • | | 0 | | 0 | | | | Herbaceous vascular | | | | | | | • | • | • | • | 0 | O | O | | Woody | | | | | | | | | | | • | • | • | | Basal area | | | | | | | | | | | | O | O | | Canopy extent and structure | | | | | | O | | | O | | O | O | O | | Interspersion of habitat types | | | | | | • | | | 0 | • | | | | | Phytoplankton diversity and abundance | O | O | | 0 | | | | | | | | | | | Plant height | | | | | | 0 | | | O | O | O | O | O | | Seedling survival | | | | | | O | | | O | O | O | • | • | | Stem density | | | | | | | | | O | O | O | • | • | | Woody debris (root masses, stumps, logs) | | | | | | | | | | | | O | O | | Vertical relief | | | • | • | | | | | | | | | | l | |-----------------|--|--|---|---|--|--|--|--|--|--|--|--|--|---| |-----------------|--|--|---|---|--|--|--|--|--|--|--|--|--|---| #### Hydrological Physical | Chlorophyll concentration | • | | | | O | | | O | | | | | | |---------------------------------|--------|---|---|---|---|---|---|---|----------|---|---|---|---| | PAR | 0 | | | | | • | | | • | | | | | | Secchi disc depth | 0 | | | | | • | | | • | | | | | | Shear force at sediment surface | 0 | O | O | O | C | O | O | O | 0 | O | | | | | Sheet flow | | | | | | | | | | O | | • | | | Temperature | 0 | 0 | • | | | • | | | 0 | | 0 | 0 | 0 | | Temporary water | | | | | | | | | | | | | 0 | | - p y | | | | | | | | | | | | |) | | Upstream land use | • | | 0 | 0 | | | | | 0 | 0 | • | • |) | | | •
• | 0 | 0 | O | • | • | 0 | | O | 0 | • | • | • | #### Chemical | Dissolved oxygen | • | | | 0 | 0 | O | | | O | | | | | |---------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---| | Groundwater indicator chemicals | O | | | | | | | | O | 0 | | | 0 | | Nitrogen and phosphorus | O | | O | O | O | | | | 0 | 0 | 0 | | 0 | | pH | O | | | O | | 0 | | | | 0 | | | | | Salinity (in tidal areas) | • | • | | • | • | O | 0 | O | • | • | • | 0 | O | | Silicon | 0 | | | | | | | | | | | | | | Toxics | O | O | O | O | O | 0 | O | O | O | O | O | O | 0 | #### Soil/Sediment Physical | Basin elevations | O | O | | O | | O | C | C | C | | C | 0 | |--|---|---|---|---|---|---|---|---|---|---|---|---| | Bulk density | | | | | | | | | O | | O | 0 | | Depth of mottling | | | | | | | | | | | | O | | Geomorphology (slope, basin cross section) | • | • | • | • | • | • | • | • | • | • | • | • | | Moisture levels and drainage | | | | | | | | | | | C | O | - Represents a parameter that is recommended for measurement in most restoration monitoring projects - O Represents a parameter that might be useful to monitor depending on the goals of the project but is not considered critical for all monitoring programs # Matrix C: Restoration Monitoring Parameters by Habitats (cont.) | | Habitats | | | | | | | | | | | | | | |--|--------------|-------------|------------|-------------|-------------|------------------------|-------------|------------|-----|-------|-----------|---------------------|---------------------|--| | Structural Parameters to Monitor (cont.) | Water Column | Rock Bottom | Coral Reef | Oyster Reef | Soft Bottom | Kelp and
Macroalgae | Rocky Shore | Soft Shore | SAV | Marsh | Mangroves | Deepwater
Swamps | Riverine
Forests | | | Soil/Sediment | | | | | | | | | • | | | | | | | Physical | | | | | | | | | | | | | | | | Organic content | | 0 | | 0 | • | 0 | O | • | 0 | • | O | 0 | 0 | | | Percent sand, silt, and clay | | O | | | • | O | • | • | O | O | O | 0 | 0 | | | Sedimentation rate and quality | | O | O | O | • | | O | 0 | O | • | 0 | O | O | | | Chemical | | | | | | | | | | | | | | | | Pore water nitrogen and phosphorus | | O | | O | O | 0 | | O | O | O | | | 0 | | | Pore water salinity (in tidal areas) | | | | | | | | | | • | | 0 | | | | Redox potential | | | | | | | | | 0 | O | | 0 | | | #### **Functional Parameters to Monitor** | Acreage of habitat types | • | • | • | • | • | • | • | • | • | • | • | • | • | |--------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---| | | | | | | | | | | | | | | | #### Biological **Plants** Species, composition, and % cover of: | Algae | | O | O | O | | • | C | C | O | | O | | | |--|---|---|---|---|---|---|---|---|---|---|---|---|---| | Epiphytes | | | • | | O | C | C | | O | | O | | | | Herbaceous vascular | | | | | | | 0 | 0 | • | • | 0 | 0 | O | | Invasives | | O | | | C | | O | 0 | O | O | O | 0 | O | | Woody | | | | | | | | | | | • | • | • | | Basal area | | | | | | | | | | | | 0 | O | | Canopy extent and structure | | | | | | 0 | | | O | | | 0 | O | | Interspersion of habitat types | O | O | O | O | O | O | C | C | O | C | O | O | O | | Litter fall | | | | | | | | | | | O | 0 | 0 | | Mast/seed production | | | | | | | | | | | | | 0 | | Nutrient levels in algal tissues (N and P) | O | | 0 | | | | | | | | | | | | Phytoplankton diversity and abundance | O | O | | O | | | | | | | | | | | Plant health (herbivory damage, disease) | | O | | | O | 0 | O | 0 | O | O | O | 0 | 0 | | Plant height | | | | | | 0 | | | O | O | | 0 | 0 | | Plant weight (above/ below ground parts) | | | | | | 0 | | | 0 | 0 | | | | | Rate of canopy closure | | | | | | O | | | O | | O | O | O | | Seedling survival | | | | | | O | | | O | O | O | • | • | | Stem density | | | , | | | 0 | , | , | 0 | 0 | | 0 | 0 | | Woody debris (root masses, stumps, logs) | | | · | | | | · | · | | | | O | O | #### Animals Species, composition, and abundance of: | Amphibians | | | | | | | | | | O | O | | O | |--------------|---|---|---|---|---|---|---|---|---|---|---|---|---| | Birds | | O | | O | | O | • | • | O | O | • | 0 | 0 | | Fish | O | • | • | O | O | O | O | O | O | O | O | 0 | | | Invasives | O | O | O | • | O | | O | O | O | O | | 0 | | | Invertebrate | 0 | • | • | 0 | • | 0 | • | • | 0 | 0 | O | 0 | O | | Mammals | | | | | | | | | | 0 | 0 | 0 | 0 | | Reptiles | | | | | | | | | | O | O | O | O | - Represents a parameter that is recommended for measurement in most restoration monitoring projects - O Represents a parameter that might be useful to monitor depending on the goals of the project but is not considered critical for all monitoring programs # Matrix C: Restoration Monitoring Parameters by Habitats (cont.) | | | | Ī | - | Ī | На | abita | its | - | | ī | • | | |--|--------------|-------------|------------|-------------|-------------|------------------------|-------------|------------|-----|-------|-----------|---------------------|---------------------| | Functional Parameters to Monitor (cont.) | Water Column | Rock Bottom | Coral Reef | Oyster Reef | Soft Bottom | Kelp and
Macroalgae | Rocky Shore | Soft Shore | SAV | Marsh | Mangroves | Deepwater
Swamps | Riverine
Forests | | Biological (cont.) Animals (cont.) | | | | | | | | | | | | _ | | | Animal health (disease) | | | | • | | | | | | | | | | | Coral growth rate | | | 0 | | | | | | | | | | | | Coral recruitment, and survival | | | O | | _ | | | | | | | | | | Fecal coliforms | 0 | | _ | | 0 | | _ | | | | | | | | Grazer density | | | 0 | _ | | | O | | | | | | | | Vertical relief of reef | 1 | | • | • | | | | | | | | | | | Hydrological Physical | | | | | | | | | | | | | | | Fetch | O | | | | | | O | O | O | O | O | O | | | PAR | | | | • | | • | | | • | O | O | 0 | O | | Secchi disc depth | O | | | • | | • | | | • | O | O | O | O | | Shear force at sediment surface | | | | | O | | | O | O | C | | | | | Sheet flow | | | | | | | | | | C | | O | O | | Temperature | | | | | | | | | 0 | | | 0 | O | | Temporary water | | | | | | | | | | | | | • | | Trash | 0 | O | 0 | O | 0 | 0 | 0 | O | 0 | 0 | 0 | 0 | O | | Upstream land use | • | | O | O | | | | | O | O | | • | • | | Water column current velocity | 0 | | O | O | | 0 | O | | O | | 0 | O | | | Water level fluctuation over time | • | • | | • | | 0 | • | • | • | • | • | • | • | | Chemical | | | | | | | | | | | | | | | Chlorophyll concentration | • | | | | 0 | | | 0 | | | | | | | Dissolved oxygen | • | | | 0 | 0 | 0 | | | 0 | _ | _ | _ | | | Nitrogen and
phosphorus | 0 | | | O | O | | | | 0 | 0 | O | 0 | O | | Salinity (in tidal areas) | 0 | | | | | | | | 0 | 0 | | 0 | | | Silicon Toxics | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Soil/Sediment Physical Basin elevations | | | O | 0 | 0 | | | | O | 0 | | 0 | | | Bulk density | | | | | | | | | | 0 | | 0 | 0 | | Depth of mottling | | | | | | | | | | | | | 9 | | Geomorphology (slope, basin cross section) | | • | • | • | • | • | • | • | • | • | • | • | • | | Moisture levels and drainage | | | | | | | | | | | | 0 | • | | Sediment grain size | | _ | | | _ | _ | _ | _ | _ | _ | | | | | (OM/sand/silt/clay/gravel/cobble) | | 0 | 0 | 0 | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Sedimentation rate and quality | | O | O | C | • | | O | O | O | O | O | O | 0 | | Trash | | O | O | O | O | O | O | O | O | O | C | C | O | | Chemical | | | | | | | | | | | | | | | Organic content in sediment | | | | | 0 | | | O | O | O | | O | • | | Pore water nitrogen and phosphorus | | | | | | | | | | O | | O | • | | Pore water salinity (in tidal areas) | | | | | | | | | | 0 | | O | | | Redox potential | | | | | | | | | | 0 | | 0 | O | [•] Represents a parameter that is recommended for measurement in most restoration monitoring projects O Represents a parameter that might be useful to monitor depending on the goals of the project but is not considered critical for all monitoring programs